Differentiation of a finite element solver for stationary Navier-Stokes

René Schneider¹ Peter Jimack² Andrea Walther³

¹Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz

> ²School of Computing University of Leeds

³Institut für Mathematik Universität Paderborn

4. June 2010

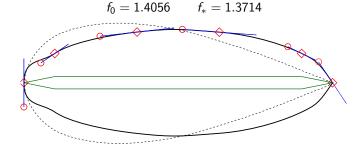
Outline

- Motivation
- 2 Structure of the FE solver
- Oifferentiation/Adjoints by hand
- 4 AD at different abstraction levels
- Conclusions

- We are interested in optimisation problems where the performance function I is a functional of the solution of a PDE and the design variables influence the geometric shape of the PDE domain.
 - ⇒ shape optimisation
- Numerical methods for the PDE lead to very large systems of equations whose solution is expensive.
 - ⇒ Efficient methods are mandatory.
 - ⇒ Gradient based optimisation algorithms.
- Here special case of shape optimisation for stationary Navier-Stokes.

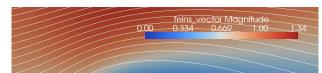
Motivation example 1: Shape optimisation (Re = 10)

optimisation result



optimisation movie

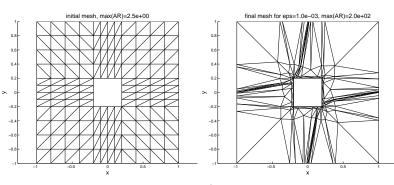
$$f_0 = 1.4056$$
 $f_* = 1.3714$



René Schneider

Motivation example 2: mesh optimisation ($\varepsilon = 10^{-3}$)

initial and optimised coarse mesh



René Schneider

Introduction to FEINS

- Name FEINS
 - originally "Finite Elements for Incompressible Navier-Stokes"
 - grown to general purpose FEM-library + collection of solvers
- primary interest: shape optimisation
- written entirely in C, currently \approx 43, 329 lines of code
- free software, GPL-license
- only 2D, but 3D extension prepared
- triangular elements (P_1, P_2) , extensions prepared
- modern (optimal) solvers, based on iterative solvers and multigrid preconditioning
- adaptive discretisation

(only stationary problems)

- Poisson-equation:
 - as testbed for components for other problems
 - PCG solver with BPX or multigrid preconditioning
 - no shape gradient available
- Lamé-equations (linear elasticity):
 - PCG solver with BPX or multigrid preconditioning
 - shape gradient available
 - adaptivity
- incompressible Navier-Stokes equations (fluid dynamics):
 - linearisation with Newton's methods or Picard iteration
 - GMRES-solver with F_p preconditioner (Schur complement preconditioner)
 - Taylor-Hood elements (inf sup stable)
 - shape gradient available

FEINS: Efficient solvers

problem	# unknowns	time solve (s)	time shape gradient (s)
Lamé	35,419,650	733	*
Navier-Stokes	37,769,219	31,000	37,000

System: on single core of

- 2x Intel Xeon Dual Core CPU 3.0 GHz
- 64 GB RAM PC2-5300 DDR2-667ECC
- openSUSE Linux 11.1 (x86_64)

FEINS: Navier-Stokes solver outer structure

```
(read mesh)
refine mesh
  nonlinear solve
     assemble matrices + residual
     linear solve, GMRES, preconditioner F_p
        solve F, GMRES, preconditioner multigrid
        multiply
        solve A_p, CG, preconditioner BPX
        multiply
        solve M_p, CG, preconditioner Jacobi
evaluate performance function
```

Example problem

FE code FEINS:

- Domain where part of the boundary is defined by Bezier splines.
- Stationary incompressible Navier Stokes equations.
- Various performance functionals.
- Differentiation wrt. to parameters of the Bezier splines (control points).

Here tests for:

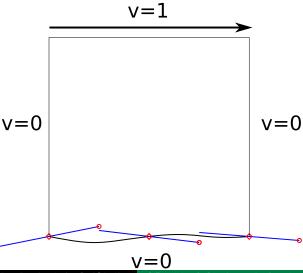
- Performance functionals:
 - Energy dissipation in whole domain.

$$I_1 = \int\limits_{\Omega} \frac{\mu}{2} (\operatorname{grad} u + \operatorname{grad} u^T) : (\operatorname{grad} u + \operatorname{grad} u^T) d\Omega$$

• Surface force in x direction, on bottom of cavity.

$$I_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}^{\mathcal{T}} \int\limits_{\Gamma_b} \left[\mu(\operatorname{grad} u + \operatorname{grad} u^{\mathcal{T}}) - \underbrace{\frac{2}{3}\mu
abla \cdot u}_{=0} \right] \cdot n \, \mathrm{d}\Gamma - \int\limits_{\Gamma_b} p \cdot n \, \mathrm{d}\Gamma$$

Lid driven cavity flow, cavity with curved bottom,
 12 Spline parameters



Adjoint Equations / Adjoint mode AD

Assumptions:

Number of independent and intermediate variables "large", but only one dependent variable (result/output).

Consider scalar quantity

$$I(s) = \widetilde{I}(u(s), s)$$
, where vector $u(s)$ defined by
$$0 = R(u(s), s). \tag{1}$$

- \Rightarrow require ∇I
- Consider small perturbation δs in s,

$$\delta I = \frac{\partial \widetilde{I}}{\partial u} \delta u + \frac{\partial \widetilde{I}}{\partial s} \delta s$$

$$0 = \delta R = \frac{\partial R}{\partial u} \delta u + \frac{\partial R}{\partial s} \delta s.$$

⇒ sensitivity equation

Adjoint Technique

$$\delta I = \left(\frac{\partial \widetilde{I}}{\partial u}\delta u + \frac{\partial \widetilde{I}}{\partial s}\delta s\right) \qquad -\Psi^{T}\left(\frac{\partial R}{\partial u}\delta u + \frac{\partial R}{\partial s}\delta s\right)$$
$$= \left(\frac{\partial \widetilde{I}}{\partial u} - \Psi^{T}\frac{\partial R}{\partial u}\right)\delta u \qquad + \left(\frac{\partial \widetilde{I}}{\partial s} - \Psi^{T}\frac{\partial R}{\partial s}\right)\delta s$$

Thus

$$\begin{split} \frac{DI}{Ds} &= \frac{\partial \widetilde{I}}{\partial s} - \Psi^T \frac{\partial R}{\partial s} \\ \text{if} \quad \left[\frac{\partial R}{\partial u} \right]^T \Psi &= \left[\frac{\partial \widetilde{I}}{\partial u} \right]^T. \end{split}$$

Example: Discrete Adjoint for FEM

FEM ⇒ linear system

$$K(s)u = b(s)$$
 $R(u,s) := K(s)u - b(s)$

- Functional $I := [g(s)]^T u$
- discrete-adjoint equation

$$K(s)^T \Psi = g(s)$$

evaluation of the gradient

$$\frac{DI}{Ds} = \frac{\partial I}{\partial s} - \Psi^T \frac{\partial R}{\partial s}$$

 Just one additional solve to get whole gradient, independent of dim(s).

Example for differentiating FE code

Differentiate performance functional in FEM code wrt. domain geometry

solve

$$K(s)^T \Psi = g(s)$$

then evaluate gradient

$$\frac{DI}{Ds} = \frac{\partial I}{\partial s} - \Psi^T \frac{\partial R}{\partial s}$$

• difficulty: require $\partial R/\partial s$, $\partial I/\partial s$, i.e. derivatives of the FE discretisation wrt. node positions

Example for $\partial R/\partial s$ for FE code

model problem:

$$F(s) := \int_{T_{\ell}} \nabla \varphi_j(x) \cdot \nabla \varphi_i(x) \, d\Omega \tag{2}$$

- unstructured mesh, isoparametric elements
- (2) is calculated by quadrature-formula on reference element

$$F(s) = \sum_{k=1}^{m} \nabla_{T} \varphi_{j}(M(\hat{x}_{k})) \cdot \nabla_{T} \varphi_{i}(M(\hat{x}_{k})) |\det(J(\hat{x}_{k}))| w_{k}$$

$$x = M(\hat{x}) = \sum_{i} s_{i} \hat{\varphi}_{i}(\hat{x})$$

$$J := \left[\frac{\partial x}{\partial \hat{x}}\right] = \sum_{i} s_{i} \left[\hat{\nabla} \hat{\varphi}_{i}(\hat{x})\right]^{T}$$

$$\varphi(x) = \hat{\varphi}(M^{-1}(x))$$

$$\nabla_{T} \varphi_{i}(M(\hat{x}_{k})) = J^{-1} \hat{\nabla} \hat{\varphi}_{i}(\hat{x}_{k})$$

 \Rightarrow if derivatives of highlighted terms are calculated, only have to use product rule for rest

Proposition 1

$$\frac{\partial \left[\nabla_{\tau} \varphi^{(i)}\right]_{u}}{\partial \left[s_{k}\right]_{t}} = -\left[\nabla_{\tau} \psi^{(k)}\right]_{u} \left[\nabla_{\tau} \varphi^{(i)}\right]_{t}
\frac{\partial \left|\det(J_{\tau})\right|}{\partial s_{g_{\tau}(k)}} = \left|\det(J_{\tau})\right| J_{\tau}^{-T} \hat{\nabla} \hat{\psi}^{(k)}(\hat{x}_{\ell}).$$

Proof:

[S. PhD Thesis], [S./Jimack 2008]

- first part: implicit function theorem, re-organising terms
- second part: utilise adjoint representation of inverse of J_T

History and Background

- Wanted to apply discrete adjoint technique for shape optimisation in CFD
 - s are node positions in FE mesh
 - \Rightarrow differentiate wrt. to these
- in 2003 started to implement FEM flow solver FEINS as testbed
- adjoint requires $\partial R/\partial u$, $\partial I/\partial u$, $\partial R/\partial s$, $\partial I/\partial s$
- $\partial R/\partial u$, $\partial I/\partial u$ simple
- $\partial R/\partial s$ and $\partial I/\partial s$ more tricky, \Rightarrow tried to use AD (ADIC, ADOL-C)
- spent two weeks with little success
- used differentiation by hand
 [S. PhD Thesis], [S./Jimack 2008]
- Referee not happy about our opinion of AD.
 - ⇒ reconsidered

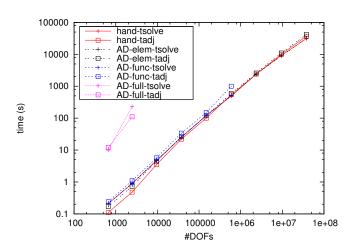
Applying ADOL-C to FEINS

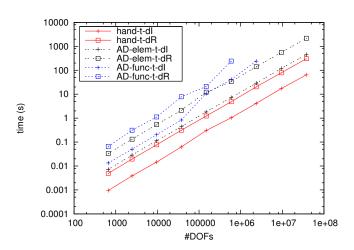
[Tijskens et. al. 2002] Level at which applied

- Full code.
- **②** Routines for I(u, s) and $(\Psi^T R(u, s))$.
- **1** Element level of I(u, s) and R(u, s).

What we had to change

- Started out with hand differentiated code:
 - \approx 3130 out of \approx 40943 lines of code dedicated to I(u,s) and the derivatives of R(.,.) and I(.,.).
- For ADOL-C on full code:
 - g++ instead of gcc compiler.
 - Dropped mesh generator triangle. (Definitely lost.)
 - Dropped all used LAPACK and BLAS routines.
 - \Rightarrow No direct coarse grid solvers for multigrid.
 - Changed pprox 4240 out of pprox 40943 lines of code.
- For ADOL-C on individual routines:
 - g++ instead of gcc compiler.
 - Dropped mesh generator triangle. (May be possible again.)
 - Changed \approx 1859 out of \approx 40943 lines of code.
- For ADOL-C on element level:
 - same restrictions as for "on individual routines"
 - Changed \approx 2082 out of \approx 40943 lines of code.





Results

	tape size in MByte			
# DOFs	AD-full	AD-function	AD-element	hand-coded
659	3,259	13	0	0
2,467	13,562	53	0	0
9,539	34,898	212	0	0
37,507		849	0	0
148,739		3,396	0	0
592,387		13,586	0	0
2,364,419		39,531	0	0
9,447,427		34,237	0	0
37,769,219		88,538	0	0

- biggest single file 64GByte
- bug or restriction in ADOL-C or in Linux?

Results

criteria (659 DOFs)

hand-coded/AD-function	AD-full
+9.4737171891857397e-01	
-3.2834420199797765e-02	-3.2834420248391054e-02

grad (659 DOFs)

g. a.a. (000 = 0.0)				
	relative error to hand-code			
para AD-function		AD-full		
1	2.8e-12	2.9e+00		
2	1.2e-12	1.3e+00		
3	6.2e-12	6.2e-01		
4	5.8e-13	2.3e+00		
5	1.6e-12	2.8e+00		
6	1.0e-12	1.2e+00		
7	3.4e-12	1.0e-01		
8	5.4e-13	2.4e-05		
9	4.5e-12	1.6e-01		
10	3.5e-12	6.0e-05		
11	6.5e-13	1.0e-01		
12	1.2e-12	2.4e-07		

criterion convergence (hand-coded), value

,,,			
# DOFs	I_1	I_2	
659	+9.47371719e-01	-3.28344202e-02	
2,467	+1.23049527e+00	-3.34322002e-02	
9,539	+1.52044541e+00	-3.37011495e-02	
37,507	+1.81382551e+00	-3.38392446e-02	
148,739	+1.66728516e+00	-3.37266467e-02	
592,387	+1.66437167e+00	-3.37215419e-02	
2,364,419	+1.66350100e+00	-3.37199409e-02	
9,447,427	+1.66327072e+00	-3.37193837e-02	
37,769,219	+1.66321284e+00	-3.37191661e-02	

criterion convergence (hand-coded), abs-error

	`	, .
# DOFs	I_1	I_2
659	-7.2e-01	+8.8e-04
2,467	-4.3e-01	+2.9e-04
9,539	-1.4e-01	+1.8e-05
37,507	+1.5e-01	-1.2e-04
148,739	+4.1e-03	-7.5e-06
592,387	+1.2e-03	-2.4e-06
2,364,419	+2.9e-04	-7.7e-07
9,447,427	+5.8e-05	-2.2e-07
37,769,219	+0.0e+00	+0.0e+00

gradient convergence (hand-coded), abs-error

# DOFs	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	´
659	+2.8e-02	+2.2e-02
2,467	+1.9e-02	+1.2e-02
9,539	+1.4e-02	+4.0e-03
37,507	+1.0e-02	+1.3e-03
148,739	+6.4e-04	+3.1e-04
592,387	+2.0e-04	+4.9e-04
2,364,419	+5.7e-05	+5.8e-04
9,447,427	+1.2e-05	+1.3e-04
37,769,219	+0.0e+00	+0.0e+00

⇒ good news:

gradient converges with same order as I(u).

Why does full AD not work?

- Andrea suggested there might be problems differentiating Krylov subspace solvers (GMRES, CG).
- Tested this with example problem Ax = b:

$$\begin{bmatrix} 2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix}$$

- system is solved with GMRES
- differentiate solution x_1 wrt. the nonzero entries of A

Differentiating GMRES

Results for n = 20

i	j	$ abla_{exact}$	$ abla_{AD}$	difference
1	1	-9.524e+00	-9.500e+00	2.4e-02
1	2	-1.810e+01	-1.800e+01	9.5e-02
2	2	-1.719e+01	-1.700e+01	1.9e-01
2	1	-9.048e+00	-9.000e+00	4.8e-02
9	10	-3.143e+01	-2.800e+01	3.4e+00
10	10	-2.881e+01	-2.750e+01	1.3e+00
10	9	-2.829e+01	-2.700e+01	1.3e+00
19	20	-9.524e-01	-1.000e+00	-4.8e-02
20	20	-4.762e-01	-5.000e-01	-2.4e-02

Conclusions/Outlook

- Algorithmic Differentiation with ADOL-C is valuable alternative to hand-coded derivatives, if applied at right level of code.
- "Automatic" is relative.
- Tape sizes appear to be one major problem with ADOL-C applied to this type of problem.
- AD not simple to apply to external libraries (LAPACK, BLAS, triangle).
- AD coded derivatives are significantly slower than (non-optimised) hand coded ones, but overhead small compared to the scale of the PDE code.
- It would be nice to compare with a source transformation tool.

Thank you!